Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Aging (Albany NY) ; 16(7): 5811-5828, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613791

Studies suggest that ketogenic diets (KD) may improve memory in mouse models of aging and Alzheimer's disease (AD). This study determined whether a continuous or intermittent KD (IKD) enhanced cognitive behavior in the TgF344-AD rat model of AD. At 6 months-old, TgF344-AD and wild-type (WT) littermates were placed on a control (CD), KD, or IKD (morning CD and afternoon KD) provided as two meals per day for 2 or 6 months. Cognitive and motor behavior and circulating ß-hydroxybutyrate (BHB), AD biomarkers and blood lipids were assessed. Animals on a KD diet had elevated circulating BHB, with IKD levels intermediate to CD and KD. TgF344-AD rats displayed impaired spatial learning memory in the Barnes maze at 8 and 12 months of age and impaired motor coordination at 12 months of age. Neither KD nor IKD improved performance compared to CD. At 12 months of age, TgF344-AD animals had elevated blood lipids. IKD reduced lipids to WT levels with KD further reducing cholesterol below WT levels. This study shows that at 8 or 12 months of age, KD or IKD intervention did not improve measures of cognitive or motor behavior in TgF344-AD rats; however, both IKD and KD positively impacted circulating lipids.


Alzheimer Disease , Cognition , Diet, Ketogenic , Lipids , Animals , Rats , Cognition/physiology , Male , Alzheimer Disease/diet therapy , Alzheimer Disease/blood , Lipids/blood , Rats, Inbred F344 , Disease Models, Animal , 3-Hydroxybutyric Acid/blood , Maze Learning , Motor Activity , Rats, Transgenic , Behavior, Animal
2.
bioRxiv ; 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38293097

Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.

...